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Abstract--Slow flows of non-Newtonian fluids through packed beds of solid particles are studied 
numerically and analytically using the free-surface cell model to account for the interactions between 
particles. The flow problem of a Carreau fluid is solved by the finite difference method and that of a 
second-order fluid by the perturbation method. It is shown that the flow drag decreases with a decrease 
in the flow behavior index and with an increase in the characteristic time. The degree of this reduction 
is found to be more significant at low voidages. The numerical results are found to be closer to the lower 
bounds obtained using variational principles by earlier investigators. The perturbation solutions predict 
that the second normal stress difference coefficient has a significant influence on the flow resistance. The 
flow resistance can either increase or decrease with an increase in the Deborah number, according to the 
values of the second normal stress difference coefficient. The results are found to be in agreement with 
the experimental findings that the viscoelastic flow through packed beds can exhibit a rapid increase in 
the flow resistance, over and above that expected for a comparable viscous fluid, in the second normal 
stress difference coefficient range for most real viscoelastic fluids. 
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1. INTRODUCTION 

The wide occurrence of non-Newtonian fluids has motivated the investigation of the flow 
behavior of these fluids in multi-particle systems. Examples of such flow include movement of 
aqueous solutions of polymers through sand and sandstone in tertiary oil recovery operations, the 
filtration of polymer solutions and slurries and the flow of polymer solutions and melts through 
granular beds in catalytic polymerization in hydroxydation processes. Experimental evidence 
indicates that the flow of viscoelastic fluids through packed beds can exhibit a rapid increase in 
the pressure drop over and above that expected for a comparable viscous fluid (Marshall & Metzner 
1976; James & MacLaren 1975; Durst & Haas 1981). 

The capillary model was originally used by Christopher & Middleman (1965) to develop a 
modified Blake-Kozeny equation. This modified Blake-Kozeny equation was used to correlate 
experimental data on the pressure drop for non-Newtonian fluid flow in fixed and fluidized beds by 
a number of investigators (Kemblowski & Michniewicz 1979; Kemblowski & Dzuibinski 1978; Brea 
et al. 1986; Mishra et al. 1975; Park et al. 1975; Kemblowski & Mertl 1974; Siskovic et al. 1971; 
Yu et al. 1968; Gregory & Griskey 1967; Gaitonde & Middleman 1967). It should be noted that 
the capillary model neglects the elongational flows in the real packed beds, which are significantly 
important for the flow resistance of viscoelastic fluids. Because of this, confl!cting conclusions have 
been reached by different investigators in simulating the viscoelastic flow through packed beds. 

The second approach to modeling flow through multi-particle systems is the cell model. 
According to this model, each particle, assumed uniformly spaced in the assemblage, is enveloped 
by a spherical fluid cell which represents the interactions between the particles. The radius of this 
hypothetical surface is related to the voidage of the assemblage considered. In the free-surface cell 
model of Happel (1958), the shear stress vanishes on the cell surface. It has been indicated that 
the cell model is an excellent alternative approach to the capillary model in analyzing the creeping 
flow of non-Newtonian fluids in multi-particle systems (Happel & Brenner 1973; EI-Kaissy & 
Heresy 1973). 

A few theoretical studies have been carried out on the flow of non-Newtonian fluids through 
multi-particle systems. The free-surface cell model has been extended to power law fluids and to 
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the Ellis fluid model by Mohan & Raghuraman (1976a, b) and to the Carreau fluid model by 
Chhabra & Raghuraman (1984). They obtained upper and lower bounds on the drag coefficient 
for an assemblage of solid spheres by using a combination of Happel's free-surface cell model and 
the variational principles. It should be pointed out that the variational results are sensitive to the 
choice of the trial functions used in the analysis and it is not possible to estimate a priori the error 
inherent in the predicted bounds. Kawase & Ulbrecht (1981) have obtained an approximate 
solution to the equations of motion for power law flow through an assemblage of solid spheres 
under the assumption that the deviation from the Newtonian flow behavior was slight. Satish & 
Zhu (1992) have calculated numerically the flow drag and the mass transfer rate for a power law 
fluid in multi-particle systems. Although the power law model provides the simplest representation 
of  the shear thinning behavior of non-Newtonian fluids, it cannot predict a constant viscosity in 
the limit of small shear rates. The Carreau model is superior to the power law model and has been 
found to be a useful model in representing the shear thinning behavior of non-Newtonian fluids. 
There is very little theoretical work, as far as we know, relating the viscoelastic flow through 
multi-particle systems, and there is no general consensus with regard to the influence of the fluid 
elasticity on the flow in multi-particle systems. Zhu (1990) has obtained an approximate solution 
for the flow of a third-order fluid through packed beds in some special cases and reported a 
significant influence of the fluid elasticity on the flow resistance. 

In this paper, the effects of non-Newtonian flow behavior including the shear thinning and 
viscoelastic flow behaviors, on the drag of the flow through packed beds at low Reynolds number 
are discussed. The paper consists of two parts. The first part is aimed at accounting for the effects 
of shear thinning behavior on the flow drag, while the second part deals with the viscoelastic effects. 
In the first part, the equations of motion for the Carreau fluids are solved using the finite difference 
method by applying Happel's free-surface cell model. The numerical results cover a wide range of 
pseudoplastic anomaly and bed voidages. In the second part, the perturbation solutions for the flow 
resistance of a viscoelastic fluid through an assemblage of spheres, considering the elastic effects 
on the flow resistance, are presented by using a second-order fluid model as a first-order elasticity 
approximation. 

2. PSEUDOPLASTIC EFFECTS ON THE FLOW DRAG 

2.1. Statement o f  the Problem 

The Carreau fluid model is written as 

"~* = [?/~ -P (no -- t]~)(1 + 2A2/-/*) (n- I)/2]D* [11 

where z* is the deviatoric stress tensor, D* is the rate of deformation tensor, /7* is the second 
invariant of D*, ~/0 and r/~ are two limiting viscosities, n is the flow behavior index and A is a 
characteristic time of the fluids. 

Introducing the following variables: 

D* H* 
D = - -  1 7 = - -  (;0) 

¥* 

Vo' 

A* z* p* - p *  
• 

r ~b* 
=-R,  O = VoR2, [21 

where Iio is the superficial velocity, R is the radius of the spherical particle, 2 is a dimensionless 
characteristic time, p is dimensionless pressure, v (dimensionless) and v* are velocity vectors, ¢ is 
dimensionless radius and the stream function qJ is defined such that 

1 3¢ 1 0~0 [3] 
v(o = ¢ 2 sin 0 30 ' v~o) = ~ sin 0 3--~' 

one may obtain the equations of motion for steady, incompressible, axisymmetric flow as follows: 

E20 = ~ sin 0 [4] 
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[a + (1 - a)(1 + 222H)(n-l)/2]E2(col sin 0) + (n - 1)(I - ct))].2(1 + 2~.2//) (n- 3)/2 

L ] × L a l  e l  (co~ sin 0) + ~0 ~2 ~0 (col sin 0)]  = 2(1 - n)(1 - a)22F(~, 0)sin 0, 

where 
E2 = c32 sin0 d ( 1 a )  

' 

F(¢, O) = ~--~ [(l + 2221-I)("-3'/2(¢D(¢o) ~-~ + D(oo, ~O )] 

d [ 222H)(~- 3)/2 fD 8II 
oo (1 + \ + - -  

and 

D(~O)¢ OH)]_frO 

[5 ]  

[6] 

[7] 

•]oo 
= - - .  [81 

r/0 

The boundary conditions are specified on the solid sphere surface as 

v(o(1, 0)  = v(o)(l, O) = O, [9] 

and on the outer sphere surface as 

v(o(s, 0) = cos 0, Dgo)(s, 0) = 0, [10] 

where s is the dimensionless radius of the cell related to the voidage of the packed bed by the 
expression 

R1 
s = -~- = (1 -- e) -'/3 , [11] 

where RI is the radius of the hypothetical fluid envelope and e is the bed voidage. The condition 
expressed by [10] indicates that the hypothetical spherical surface is frictionless. 

2.2. Numerical Solutions 
The stream function and vorticity (co) vary most rapidly near the surface of the sphere, thus 

requiring a small step size. Far from the surface, a larger step size is adequate. This is achieved by 
using equal intervals in z (~ = e~). To obtain numerical solutions for the problem, finite differences 
are used. The solution consists of the stream function and vorticity fields. The resulting finite 
difference equations using central space differences are solved using the successive over-relaxation 
method. 

The mesh sizes are varied, depending upon the voidage of the packed beds. A grid of (41 x 51) 
was found to simulate accurately the flow resistance for the case of e = 0.5. For instance, when 
e = 0.5, n = 0.7, 2 = 1.0 and ~ = 0.0, drag coefficients of 15.8697 and 15.8563 are obtained with 
(41 x 51) and (81 x 101) meshes, respectively. In order to verify the validity of the present 
numerical schemes, the numerical results are compared with the analytical solutions of their 
Newtonian flow counterpart for all the voidages considered. It was found that the stream function 
is in agreement with the analytical solutions within 0.01%, the vorticity within 0.1% and the drag 
coefficient was satisfied within 1-2%. 

2.3. Flow Drag Calculation 
The flow drag on the solid sphere is given as 

FD=2nR2If~(--P*)r=,~cosOsinOdO--f~('r*(,o)),=Rsin2OdO ] . 
The drag coefficient for the non-Newtonian fluid behavior is, therefore 

l[f: fo 1 YD= Co --3 - ~ =  p,(O) cos 0 sin 0 dO + (z(¢o)~=o sin ~ 0 dO 

[12] 
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where the surface pressure ps(0) is calculated using the following relation: 

p,(O) = 2 [~ + (1 - cQ(1 + 222//) (" ~ ~)/2] oco 
:o  ~ dO 

- (n - 1)(1 - ct)),2(1 + 2),2H) (n- 3)/2D(¢¢)8//~ dz 
az ]0=0 

+ [o~ -I- ( l  - -  0~)(1 -k 2 j , 2 / 7 )  (" - , ) /2]  ~ or_ co 

+ co(n - 1)(1 - ~)J.2(1 -k 2j.2//) (n -3)/2 8/'/} dO; [14] 

Re is the Reynolds number defined on the viscosity at zero shear rate, 

pVo2R 
Re - [15] 

% 

where p is the density of  the fluid. 
The results of  YD have been computed for a wide range of model parameters and bed voidages. 

The effects of the flow behavior index n on the drag coefficient YD is shown in figure l(a, b) for the 
free-surface cell model simulation. The variation of log(Yo) is almost linear with n. As n decreases, 
YD decreases. The degree of  reduction becomes weaker as the voidage becomes larger. The 
theoretical predictions based on the variational principles presented by Chhabra & Raghuraman 
(1984) are also plotted in figure l(a, b). It can be seen that the results of the present numerical 
analysis are near the lower bound of  their predictions. A definite advantage of  the present analysis 
is that it predicts the results in a closed form. 

Figure 2 shows Yo as a function of dimensionless characteristic time 2 at different values of n 
and c in the case of  negligible r/o~. It can be seen that ] I9  decreases as the e increases and it decreases 
rapidly as 2 increases. It can also be noted that in fluids with high pseudoplastic anomaly, the 
reduction in YD becomes more significant at lower values of  2 and the degree of  this reduction is 
more pronounced compared with low pseudoplastic anomaly fluids. 

The effect of  the limiting viscosity r/~ (i.e. ~) on YD is shown in figure 3. q~ is usually small 
compared with %. Furthermore, q~ is reached at values of shear rate so high that they are unlikely 

Yo 
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Figure  1. Effect o f  the flow behav ior  index n on the d rag  coefficient Yo: (a) ~. = 1.0, ct = 0.0; (b) ;t = 100, 
= 0.0. 
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Figure 2. Effect of dimensionless characteristic time 2 on the 
drag coefficient YD for ~t = 0.0. 
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Figure 3. Effect of dimensionless limiting viscosity ~ on the 
flow drag YD for n = 0.5. 

to be encountered in creeping flow problems, so the influence of  r/~ (therefore a) is often neglected. 
Moreover, by inspection of  figure 3, one can see that a may have a significant effect on the drag 
coefficient, especially when 2 is high, r/~o may be reached at lower values of  the shear rate if the 
shear thinning behavior of  the fluids is strong, i.e. in the cases of high 2 values. 

3. VISCOELASTIC E F F E C T S  ON THE FLOW DRAG 

3.1. Perturbation Equations 

The constitutive equation of a second-order fluid is written as 

• * = rlo~* + f l l~ .2 + f12~*, [16] 

where ill, r2 are the material constants and ~* is the nth Rivlin-Ericksen tensor. 
The total dimensionless deviatoric stress tensor • can be decomposed into two parts. 

(t) 
= A + ,(e), [17] 

= ,,,"; 
where t(¢) a w . ~ 2 +  is the extra stress caused by non-Newtonian effects and a =/~2 Vo/%R, 

The dimensionless equation for the stream function # can be written as 

E2(E2~b) = - ~  sin 0[V x (V • ~(¢))](#). [18] 

Expanding the stream function, velocity, Rivlin-Ericksen tensors and stresses in the form of  
power series in the perturbation parameter tr, then to the various orders of  approximation, one 
can obtain the following. 

Zeroth-order approximations 

The boundary conditions read 

a n d  

E2(E2~ko) = 0. [19] 

V(oo(1, 0) = v(o)o(1, 0) = 0 [201 

(I) 
vtoo(s, O) = cos 0, A(¢0)o(s, 0) = 0. [21] 

Higher-order approximations (i = 1, 2) 

E2(E2#i ) = - ~  sin 0[V x (V. z~e))](#), [ 2 2 ]  
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where the higher-order extra-stress ~") are 

~.~e) (I) 2 (2) 
=/3 Ao + Ao 

and 

The boundary  condit ions read 

and 

[231 

(U (i) (i) I[ (2) 

• ~) = fl(AoA, + AI Ao) + A~. [24] 

v(¢)i(1, 0) = v(o)i(1, O) = 0 [25] 

(1) 

v(~)i(s, O) = O, A(~o)i(s, 0) = ~(e) ~,. 0). [26] - -  ~ ( ~ O ) i  ~,~' ,  

3.2. Perturbation Solutions 

Zeroth-order solutions 

The general solution to [19] is 

~o = (al 34 + a2~ 2 + a3~ + a4¢ -1)sin2 0. [27] 

The constants  in [27] should be determined so as to satisfy the boundary  condit ions [20] and [21], 
which leads to 

1 
al = 2(2s 5 _ 3s 4 _ 2s -1 + 3 ) '  [28a] 

2 s 5 +  3 
a2 = 2(2s 5 -  3s 4 -  2s -~ + 3 ) '  [28b] 

3 s5+  2 
a3 = 2(2s 5 _ 3s 4 _ 2s i + 3 ) '  [28c] 

and 
S 5 

a 4=  2(2s 5 - 3 s  4 - 2 s  ~ + 3 ) "  [28d] 

First-order solutions 

Assuming that  the values o f  s are >> 1 and neglecting the terms of  lower order  than ~ -4 in deriving 
an extra-stress tensor ~]°), we have the first-order approximat ion  as follows: 

E2(E2~b~ ) = 12(4fl + 9)a3~ -5 sin 2 0 cos 0. [29] 

It  may  be noted that  Kawase  & Ulbrecht  (1981) have adopted  a similar assumption in solving 
the problem o f  power  law fluids in an assemblage o f  spherical particles. 

The general solution to [29] is 

qJ~ = [b~ ¢5 + b2¢3 + b3 -k- b4¢ 2 _ ½ (4fl + 9)a3~ -~]sin 2 0 cos 0. [30] 

The constants  b~, b2, b3, and b4 in [30] are determined by the boundary  conditions: 

b~ = -4(2 /3  + 3)(5s -9 - 2s -6) - 5(4fl + 9)s -7 + 20(4/3 + 9)s -~0 _ 9(4/3 + 11)s ~ 
10(2 - 5s -3 + 5s -7 - 2s -t°) a~, [31a] 

b2 = (2 - s - s - l ) ( 4b  + 9)a~ - 2(2s 6 - 7s + 5s-~)b~ 
2(2s 4 - 5s + 3s -~) ' [31b] 

b3 = -½ [7b, + 5b2 - ½ (4/3 + 9)a~] [31c] 

and 

b, = ½[5b, + 3b2 + ½(4fl + 9)a21 . [31d] 
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Second-order solutions 
Neglecting the terms of  order lower than ~-4 in deriving the component  expressions of  the 

second-order extra-stress tensor ~[°), we have the second-order approximation as follows: 

E2(E2~/2) ---- 12a3b3 ~ -6 sin 2 0128(1 + fl) - (29 + 32fl)sin 2 0]. [32] 

The general solution to [32] is 

~2 = RI (¢)sin 4 0 + R2(~)sin 2 0, [33] 

where 

and 

1 
R I (~) = cl ~ 6 + c2 ~ 4 + c3 ~ -1 + c4 ~ -3 + 4 (29 + 32fl)a 3 b 3 ~ - 2  

4 
R2(~) =d l  ~4 + d2~2 + d3 ~ + d4¢ -I _ 5 (c, ~6 + c4 ~ - 3 )  - -  ( 5  "3 I- 6fl)a3b3~ -2. 

[34] 

The constants ci(1 . . . . .  4) and dj(1 . . . . .  4) should be determined by the boundary  conditions, 
which leads to: 

A I 
Cl =S 

A2 
C2 =A 

1 1 
C 3 = - - g  (29 + 32f l )a3b  3 - ~ (9cl + 7 C 2 )  

1 
c4 = - g ( 2 9  + 3211)a3b3 + (7ct + 5c2) 

dl 2;1 
Z 

d2 = 2:2 
2; 

d3= ~[3(5+6fl)a3b3+~(7Cl-2C4)-5dl-3d21 

1 4 + + d2]. ~[-(5+6fl)a3b3+-~(4c4- 5cl) 3dl 

For  the expressions of  A, A~, A2, 2;, 271 and 2;2, see the Appendix. 

3.3. Viscoelastic Effects on Flow Resistance 
From the force equilibrium on the cell, we obtain the pressure drop over the cell, 

where 

and 

Ap F D 3r/0V o 
- g  = = (Do + D : ' ) ,  

2(3s 5 + 2) 
Do = (2s5 _ 3s 4 _ 2s_ 1 + 3) 

D2 = 4d3 + 
2b3(327 + 240fl)(3s 5 + 2) 
45(2s 5 - 3s 4 - -  2s- l  + 3) " 

[36a] 

[36b] 

[36:] 

[36d] 

[37a] 

[37b] 

[37c] 

[37d] 

[38] 

[39] 

[40] 

[351 
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It is convenient to convert the flow drag to the more familiar quant i tyfNR,,  where the friction 
factor f and Reynolds number NRe are defined respectively, as follows: 

Ap 2RE 3 
f -  L pZ2(1- ~) [41] 

and 

NRe = - -  

The Deborah number De is defined as 

2RpVo 
r/0(1 - E ) '  

[421 

/~, V0 
De = ERq----£ " [43] 

The flow resistance (product o f f  and NRe ) can be written as follows: 

where 

f S R e  = G(1 + E De2), [44] 

and 

6D0 E 3 
G - - -  [45] 

(1 --E) 

2D 2 
E - [46] 

4D0 

Before embarking upon the presentation of the results obtained in this study, it is useful to 
examine the physical significance of the dimensionless parameter /3. From the viscometric 
calculations, the ratio of the second normal stress difference over the first normal stress difference 
for a second-order fluid may be obtained as follows: 

N2 
- (1 +½/?). [47] 

NI 

Results of many viscometric experiments indicate that the second normal stress difference is 
negative and its absolute value is much smaller than the first normal stress difference, i.e. 

0 ~ (1 + lfl)  ~ 1. [481 

In an earlier study by Zhu (1990), it was assumed that N2/N~ = 0 in dealing with the third-order 
fluids of the same flow configuration. A comparison between the results of the present study and 
those of the earlier study by Zhu (1990) is given in figure 4. The reasonable agreement between 
these two results indicates that the approximation of neglecting the lower-order terms of ~ in 
deriving the perturbation equations is acceptible and simplifies greatly the solution procedures. 

The effect of viscoelastic flow behavior on the flow drag is shown in figure 5(a, b) in terms of 
fNRe and De for four different values of E (0.3, 0.4, 0.7 and 0.99) which cover the condition dealing 
with strong levels of particle interaction to the flow past a single solid sphere. An inspection of 

1 0  4 ,.._..:,, z:,,.,::., // 
,.; -.. . -j 

1 0  2 i 

1 0  -2 10"1 De 1o° 

Figure 4. Comparison between the present resuRs and Zhu's 0990) results for/~ = - 2 , 0 .  
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De 

Figure 5. Effect of  viscoelastic behavior on the flow resistancefNae for different bed voidages E: (a)  ~ = 0.3 
and 0.4; (b)  E = 0.7 and 0.99. 

figure 5(a, b) reveals that both the dimensionless material constant fl and the assemblage voidage 
have a significant influence on the flow resistance. When,  is small, the strong particle interaction, 
which implies strong elongational flow, enhances the flow resistance significantly after De reaches 
a critical value. The degree of  augmentation infNRo becomes small as the value o f ,  increases. When 
, reaches the value of 0.7, fNRe decreases slightly with the increase in De. F o r ,  = 0.99, i.e. in the 
approximate condition of viscoelastic flow past a single solid sphere, the flow resistance is reduced 
by fluid elasticity, a result which coincides with the perturbation solutions of Leslie (1961) and Su 
(1984) for an infinite flow past a single solid sphere. 

In figure 6, the dependence of the parameter E in [44] on the dimensionless material constant 
# is shown. It can be concluded from figure 6 that the influence of the second normal stress 
difference on the flow resistance is important. The bigger the value of the second normal stress 
difference coefficient, the smaller will be the influence of the fluid elasticity. For most real visco- 
elastic fluids, the value of # is around - 2 . 0  and E is generally positive. In the intermediate values of 
the assemblage voidage (0.3 ~<, ~< 0.6), viscoelastic flow can exhibit a rapid increase in the pressure, 
especially for cases with small voidages. 

In figure 7, a comparison is made between the present prediction and the experimental data 
of  Marshall & Metzner (1967). In their experiments, a packed bed of particles with a voidage of 
0.486 were used. The three kinds of fluids used were a 0.2% aqueous solution of Carbopol 934, 
5% PIB L10 in toluene and ET-597 in water, respectively. Viscometric experiments indicate that 
their relaxation times (extracted from the first normal stress difference measurement) increase 
successively. In figure 7, Fe and 0, denote the elasticity factor and the relaxation time of the fluids 
as shown below, respectively: 

Fe = 1 + E De 2 [49] 
and 

-/~2 
0~ = - -  [ 50 ]  

r/0 

300 

2 0 0  

1 0 0  

---o---- s-0.3 
• l ~ - 0 . 4  

¢-0.6 

E 

-100 
-2.0 -1'.9 -1'.8 -1'.7 -1'.6 -1.5 p 

Figure 6. Dependence of  the parameter E in [44] on the 
dimensionless material constant #. 
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Figure 7. Comparison between the present prediction 
and Marshall & Metzner's (1967) experimental [~, 0.2% 
Carbopol 934 in water; A ,  5% PIB L10 in Decalin; 

©,  0.25% ET-597 in water. 
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Figure 8. Comparison between the present prediction based on the flee-surface cell model and the 
experimental results of Durst & Haas (1981): (a) PAM W25 in 0.5M NaC1, M =  19.23 x 106, 
c = 12.5 ppm; (b) PAM W968 in 0.5 M NaC1, M = 10.76 x 106, c = 12.5 ppm; (c) PAM WN23 in 0.5 M 

NaC1, M = 3.48 x 106, c = 50 ppm; (d) PAM WN23 in 0.5 M NaC1, M = 3.48 x 106, c = 25 ppm. 

In the present study, for purposes of comparison, we have chosen fl = - 1.7, which implies that 
NE/N~ = -0.15. It can be seen that the theoretical predictions agree well with the experimental 
results up to intermediate values of De and overestimate the flow resistances at higher De. 
The theoretical overestimation at higher De may be due to: 

(1) The shear thinning behavior of the real fluids in experiments. Note that the 
second-order fluid models predict constant viscosity and fail to include the 
pseudoplasticity of the fluids. 

(2) The shortcoming of the second-order fluid model in dealing with the strong 
elasticity, since the assumption of a second-order fluid is only a weak elasticity 
approximation of real fluids. 

In figure 8(a-d), comparisons between the present predictions and the experimental results of 
Durst & Haas (1981), using a packed bed of spheres having a voidage of ~ = 0.37, are shown. It 
is seen that the present study successfully predicts the flow resistance in low De regions. According 
to the experimental evidence of Haas & Durst (1982), using simple flow geometries of regularly 
arranged spheres, the macromolecules of the polymer solutions are stretched step by step and 
degraded by extension after four contractions. The reduction in flow resistance in high De regions 
can be explained partly by degradation of the macromolecules under strong extensional flows. It 
should be noted that both the second-order fluid model and the perturbation method used in the 
present study are only effective under the assumption of weak elasticity, as mentioned earlier. It has 
also been observed that (Durst et al. 1987; Bird et al. 1977), by using the finite extensible non-linear- 
elastic dumbell model, the elongational viscosity of polymer solutions when exposed to a constant 
elongational strain rate can be expressed as a polynomial of De only in the asymptotic case of low 
elongational strain rates. Strong elastic effects on the flow drag in packed beds merit further 
investigation. 
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4. CONCLUSIONS 

The flow problems of Carreau fluids through packed beds are solved numerically under creeping 
flow conditions by using the cell model to simplify the multi-particle systems. The drag coefficient 
has been calculated for the multi-particle systems by finite difference methods. The predicted 
reduction in the drag coefficient due to the shear thinning behavior of the fluids is found to be closer 
to the lower bounds of Chhabra & Raghuraman's (1984) findings, obtained by a combination of 
the free-surface cell model and variational principles. A definite advantage of the present study over 
Chhabra & Raghuraman's is that it presents the results in a closed form. The results indicate that 
the degree of drag reduction due to the pseudoplastic behavior is more significant for low voidage 
beds. It is found that the limiting viscosity ~/~o of fluids has a great influence on the flow drag, 
although r/~ is usually small for most shear thinning fluids. 

Using a combination of the free-surface cell model for packed beds and the second-order fluid 
model for fluids, the present study offers a more efficient approximation to the viscoelastic flow 
through packed beds of solid spheres. The predicted augmentation is in good agreement with the 
available experimental data up to intermediate values of De. It is found that both the second 
normal stress difference and the bed voidage have a great influence on the resistance of viscoelastic 
flow through a packed bed. In cases with small bed voidages, the flow resistance increases with 
the increase in De in the range of the second normal stress difference for most viscoelastic fluids. 
In cases with large bed voidages, the flow resistance can decrease with the increase in De. 
In conclusion, for simulating flow in packed beds, the cell model is more realistic than the classical 
capillary model since it reflects the elongational flow occurring in real flows through packed beds, 
which has a significant influence on the flow resistance. 
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A P P E N D I X  

Expressions of A, At, A2, S,, 2t and ~2 in Solutions [36a-d] and [37a-d] 

For the requirements of the boundary conditions [25] and [26], we can obtain the linear algebraic 
equation for the constants ct, c2, c3, c4, dr, d2, d3 and d4 as follows: 

- ( 2 9  + 32fl)a3b 3 
cl + c2 + c3 + c4 = 4 ' [A.I] 

6cl + 4c2 - c3 -- 3c4 = (29 + 32fl)a3b 3 [A.2] 
2 

-5 = - ( 2 9  + 32fl)a3b3s-4 [A.3] 
e l s 4  ..~ c2s2 dl - c3 S 3 .~_ c4 S 4 

and 

15cts 4 + 8c2s z + 8c3s 3 + 15c4s -5 = - (611  + 376fl)a3b3 s-4 [A.4] 
4 

The solution to the above equations has the form of  [36a-d] with the expressions for A, A~ and 
A 2 as follows: 

A = 14(2s 6 -- 7s + 7s 3 _ 2s-8), [A.5] 

[6(35 - 24fl)s - 2 + 7(29 + 32fl)s - 3 _ 21 (35 - 24fl)s - v _ 42(29 + 32fl)s - 8 + 20(77 + 38fl )s -9]a3 b3 
At= 2 

[A.6] 
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and 

A 2 = 
[7(29 + 32fl)s - 8(77 + 38/$) + 27(35 - 24fl)s -7 + 56(29 + 32fl)s-8 _ 28(77 + 38fl)s -9]a3b 3 

and 

and 

where 

and 

[A.7] 

d,+d~+d~+d,=A,, 

4dl + 2d2 + d3 - d4 = A2, 

dls2 + d2 + d3s-l  + d4s-3 = A3 

[A.81 

[A.9] 

[A.10] 

dl s 2 + d4s-3 = A4, [A.11] 

AI = 4(c~ + c2)/5 + (5 + 6fl)a3b3, 

A2 = 4(6cl - 3c4)/5 + 2(5 + 6fl)a3b3, 

A 3 = 4(Cl s4 + C4S-5)/5 + (5 -'1- 6fl)a3b3s-' ,  

"~4 ~--- 4Cl s4 + 4(C2 S2 + C3S-3)/3 + 4C4 s-5  + (17 + 60fl)a3b3s-4/3 

[A.12a] 

[A.12b] 

[a.12c] 

[A.12d] 

A5 = 36c1 s4/5 - 4c2s 2 + 4c3s-3 + 12c4s-5/5 - (19 + 20fl)a3b3s-4. [A.12e] 

The  solution o f  [A.8]-[A.11] has the fo rm o f  [37a--d] with Z, Z~ and Z2 expressed as follows: 

= - 2 s  z + 3s - 3s -3 + 2s -4, [A.13] 

2~1 = - 2 A 4  + 3A4s -~ - (A1 - A2 + A3 - A4)s -3 - (A2 - 2Al)S -4 [A.14] 

and 
~2 = 2(A4 -- A3) $2 + (Ai + A2)s -- 5A4s- l  + 3(A4 - A3)s-3 + (4A1 - A2)s -4. [A.15] 
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